FACT SHEET UPDATE

Following the merger of Newmont and Goldcorp on April 18, 2019, Newmont Goldcorp has updated the fact sheet providing information on the combined company’s tailings storage facilities. The former Goldcorp sites will be managed under their existing Tailings Stewardship Program, as described below, until the facilities are fully integrated under Newmont Goldcorp’s governance model, standards, technical guidelines and operating procedures (expected by mid-2020).

BACKGROUND

Tailings are created as mined ore is processed into particles of fine sand through crushing, grinding and milling. Mined ore is moved to the milling circuit where the rock is reduced into sand and silt sized particles and then mixed with water and moved as slurry through the gold, silver and copper recovery process. The valuable minerals are separated from the rest of the milled rock particles either through physical or chemical recovery processes. After removal of the valuable minerals, the remaining milled rock slurry, now referred to as tailings, is pumped or flows by gravity to an engineered impoundment area.

The tailings pond water is then recycled back into the milling process for reuse. The tailings are contained within the impoundment facility and once it reaches capacity, the impoundment is reclaimed with a designed cover system used to minimize erosion and infiltration, while maintaining containment of the materials, protecting the environment and achieving post-mining designated land use.

CONSTRUCTION METHODS

Impoundments are designed and constructed to store both tailings and water. The construction methods include two main types of impoundments: (1) water retention dams and (2) raised impoundments. Water retention dams are typically constructed to their full height prior to anything being stored upstream and raised impoundments are raised over time to store additional material. Raised impoundments are the most commonly used method for tailings storage facilities (TSFs). The raised impoundment design methods for TSFs are typically downstream, upstream or centerline. This designates the direction in which the embankment crest moves in relation to the starter dam (dyke) and the base of the embankment. Modified centerline is a combination method using both upstream and centerline.

Upstream

Construction of an upstream embankment begins with development of a starter dyke. The tailings are then discharged from the dam crest and form the foundation for future raises. Figure 1 shows an overview of the stages of construction.

Figure 1: Upstream construction method

Downstream

Downstream methods start with an impervious starter dyke normally with an internal drainage system as shown on Figure 2. The tailings are first deposited behind the dyke and the embankment is raised overtime.

Figure 2: Downstream construction method

These engineered impoundments are carefully designed, constructed and operated to safely contain the tailings and water, even during extreme climatic or seismic events. Depending on the chemical characteristics of the tailings and the surrounding environment, the engineered tailings impoundment will generally be lined with a composite liner system consisting of a low permeability soil liner overlain by a geosynthetic liner such as high density polyurethane (HDPE) to prevent impacts to surface and groundwater systems. As the tailings slurry is deposited in the impoundment, the water separates from the heavier sand and silt particles and collects to form a decant/reclaim pond on the surface of the impoundment.
The centerline method combines both upstream and downstream designs. Unlike the upstream method, where tailings are normally deposited from the crest when raises are required, material is placed on both the tailings and the existing impoundment. The embankment is raised vertically and does not move in relation to the upstream and downstream directions of raises as shown on Figure 3.

This design method often also incorporates internal drainage. Modified centerline is a combination of upstream and centerline methods and is done to reduce the volume of construction material that is required to be placed downstream from the embankment.

Figure 3: Centerline construction method

DEPOSITION
Tailings can be discharged using subaqueous (below water) or subaerial techniques. Subaerial deposition is more common than subaqueous as it forms a sloping beach toward the reclaim/decant pond. Subaerial can be done from single or multiple discharge points and can be rotated around the facility. Subaqueous deposition is normally completed when there is a potential for oxidation that could result in mobilized acid mine drainage. Subaqueous deposition can be completed in conventional impoundments, as well as offshore.

Tailings can be dewatered or modified in other ways prior to deposition. The current methods include:

- Thicken tailings (which involves a process of dewatering to form a low solids content slurry);
- Paste (which includes dewatering until the tailings do not segregate as they are deposited and have minimal excess water);
- Dry stack (includes dewatering to a filtered wet and dry cake that cannot be transported via a pipeline); and
- Co-disposal which includes mixing mine waste with dewatered tailings (other terminology includes co-mingling, co-placement or co-deposition whereby each has slightly different methods of mixing material).

NEWMONT GOLDCORP’S TAILINGS STORAGE FACILITIES
Newmont Goldcorp’s engineering, construction and operating standards and technical guidance explicitly cover tailings management and establish requirements to ensure safe and stable facilities throughout their operating and post-mine closure life. The design, construction and operation of all tailings impoundment facilities are scrutinized through our Investment System process, supported by inspections and audits, critical controls and strict application of annual inspections by independent qualified geotechnical engineers. Newmont Goldcorp’s Environmental Standard for Closure and Reclamation Management covers the long-term management of tailings impoundment facilities to ensure safe and stable conditions.

Newmont Goldcorp has both operational and closed tailings impoundments in a variety of climatic and topographic settings. Newmont Goldcorp conducts extensive siting, engineering, environmental and social studies to support the specific selection and design of each facility. Annually, Newmont Goldcorp safely manages and disposes more than 100 million tonnes of tailings that are placed within engineered, surface containment facilities; used to backfill former mining pits; or placed as structural backfill paste in underground mines.

Appendix 1 includes an inventory of existing tailings storage facilities at operating and legacy sites outlining the construction method, maximum height and volume of material.

NEWMONT GOLDCORP STANDARDS AND GUIDELINES
Newmont Goldcorp’s Environmental Standard for Tailings and Heap Leach Facility Management sets the minimum requirements for the design and management of tailings storage facilities (TSFs) to protect human health, wildlife, flora, groundwater and/or surface water, prevent uncontrolled release to the environment, manage process fluids, and identifies requirements for closure and reclamation.

The standard works in conjunction with other standards and incorporates the International Council on Mining and Metals’ position statement on ‘Preventing Catastrophic Failure of Tailings Storage Facilities.’ All Newmont Goldcorp sites identify, assess and comply with laws, regulations, permits, licenses, external standards and other relevant or appropriate requirements.

Planning and Design
- Sites complete a baseline of conditions prior to design of the TSF, including evaluation of land use, hydrology/hydrogeology, geochemistry, biodiversity, cultural resources geology, seismicity, soil and visual aesthetics.
- Management plans must be developed to restrict potential releases to the environment.
- Management plans are expected to include: design and operating criteria, schedules for inspections, monitoring and maintenance, applicable regulatory, legal or other requirements, management methods, risk assessments, overview of instrumentation including KPIs/critical controls, organization structure (roles and responsibilities), training requirements, emergency response plans (inundation mapping and analysis) and concurrent reclamation.
Fluid management plans that describe management of solution levels based on the site-wide water balance. The plan will also identify trigger alert levels and contingency plans during operations, closure and reclamation phases.

Characterization and specifications for geochemical and physical properties of the construction and tailings materials.

Engineering requirements for seepage control, liners, and leak collection recovery systems. With excess solutions that may require discharge complying with applicable quality and quantity discharge limits based on downstream beneficial use.

Engineering requirements for geotechnical stability including systems for storm containment and runoff that reduce erosion potential and impact to the containment.

Requirements for piezometers to monitor solution pressure in the embankments and tailings. Groundwater monitoring wells to establish baseline and monitor potential seepage.

Risk-based assessments determine whether the design criteria ensure adequate levels of protection.

Quality control and quality assurance protocols are required to document the construction complies with engineering design.

Implementation and Management

All facilities will have critical controls to mitigate significant risks with risk assessments conducted annually or at major milestones.

TSF and fluid management plans must be reviewed and updated annually.

Site-wide water balances are updated over the life of the operations to reflect changes in mine plans, processing and operations.

The tailings facilities must be operated within design specifications including piezometer head in embankments and tailings and the management of the pond with design and operational criteria.

A closure and reclamation plan shall incorporate the requirements of the fluid management plan and support stormwater and erosion management while achieving post-mining land use.

The TSF is managed to be protective of the environment and adheres to the requirements of the International Cyanide Management Code, and permit/license/regulatory requirements as any other legal obligations or voluntary commitments.

Performance Monitoring

Tailings impoundments shall be inspected for erosional and geotechnical stability, material characterization (geochemistry and ARD potential), trigger limits and critical controls.

Annual geotechnical reviews are required by a qualified independent senior geotechnical engineer. Independent tailings review boards (ITRB) have been identified based on technical, social and political risks identified by Newmont Goldcorp leadership and are conducted as a portion of the TSFs on an annual basis.

Routine inspections to verify integrity and to support maintenance and repair programs as defined in the monitoring plans. This includes all instrumentation including piezometers, inclinometers, settlement points and rate of rise as defined in the monitoring plans. Inspection and maintenance activities are also completing following events (rainfall, seismic etc.).

NEWMONT GOLDCORP’S TECHNICAL GUIDELINES AND STANDARD OPERATING PROCEDURES (SOPS)

Newmont Goldcorp’s Technical Services team has developed Tailings Facility Geotechnical Guidelines that define minimum requirements for tailings impoundments:

- Definitions for tailings embankments
- Responsibilities of engineering and management staff
- Geotechnical input design criteria guidelines for:
 - Foundation settlement and consolidation
 - Seismic loading
 - Liquefaction
 - Hydraulic properties of the foundation, soil liners and drainage layers
 - Water management systems
 - Tailings rheology and characteristics
- Geotechnical process design for:
 - Geotechnical field investigations
 - Laboratory testing
 - Engineering design
- Geotechnical design requirements for each level of Project Design
- Risk analysis
- Quality assurance/quality control
Newmont Goldcorp’s Technical Services team has also developed Seismic Design Criteria Guidelines that define minimum requirements for design, construction and operation of tailings impoundments to ensure safe and stable operations for region-specific seismic events. Each operation develops and implements site-specific Standard Operating Procedures (SOPs) and manuals based on the tailings impoundment design. Site-specific SOPs consist of per shift activities including inspections of pipelines, open liner, embankments, pond levels and leak detection systems.

NEWMONT GOLDCORP’S EMERGENCY RESPONSE PLANNING AND COMMUNICATIONS

All Newmont Goldcorp operations have Emergency Response Plans that define chain of command and communications and actions to take during emergencies. Additionally, Newmont operations have developed site-specific dam break inundation analysis plans to support emergency planning including communications and evacuation notification.

In most jurisdictions, Newmont Goldcorp operations also do joint drills and exercises with local emergency response teams to prepare for emergencies. It should be noted that Newmont Goldcorp has contingency plans in place at every operation that describe trigger levels and detailed actions required to prevent overtopping of tailings impoundments. This includes reporting that is completed on a monthly basis associated with critical controls.

NEWMONT GOLDCORP’S AUDITS, INSPECTIONS AND REPORTING

Newmont Goldcorp has a number of programs through the Sustainability & External Relations and Technical Services teams for auditing, inspecting and reporting on the stability of our tailings facilities. The Technical Services team routinely conducts geotechnical reviews with the internal engineering team and reviews annual inspection reports prepared by independent qualified geotechnical engineers and Independent Technical Review Boards. Reporting on tailings management systems at the corporate level can be found at:

To improve understanding of the potential risks associated with tailings storage facility management, potential catastrophic failure was added as an enterprise risk in 2017 at the corporate, regional and site levels. Critical controls are reviewed and reported on a monthly basis at each operation as part of Newmont Goldcorp’s Enterprise Risk Management program.

ALIGNMENT OF GOLDCORP’S TAILINGS STEWARDSHIP PROGRAM TO NEWMONT GOLDCORP’S STANDARD

Goldcorp developed a Tailings Stewardship Program in 2015 as part of a commitment to the safe and environmentally responsible development, operation and management of tailings storage facilities with focus to reduce risks by ensuring good practices are implemented at all Goldcorp tailings storage facilities and qualifying water dams. The current program is based on regulatory requirements, incorporates industry best practices and Goldcorp’s desire to be an industry leader in our sustainability practices. Tailings stewardship is designed to identify issues and concerns, manage liabilities, identify opportunities for operational efficiency, provide input into design, construction, operation and mine closure, educate operators, improve data management, provide a standardized review process, and prepare for upsets.

Dam Safety Inspections and risk assessments are updated annually to manage tailings in a manner that effectively mitigates environmental, public health and safety, and community impacts while maintaining the long-term security of the tailings facility and sustainable land use options. Tailings facilities are managed commensurate with the risks they pose, with the objectives of preventing performance failures and meeting environmental requirements. All solids and water are managed within designated areas that meet design intent, and tailings management complies with regulatory requirements and conform to sound engineering practice, company standards, tailings management framework, and commitments to communities of interest including Indigenous groups.

A work plan has been developed to integrate Goldcorp’s tailings storage facilities into Newmont Goldcorp’s standards and governance system within 12 months after closing. This will include gap assessments and action to meet the standards, site visits and inspections and implementation of critical controls and independent technical review boards for all active operations.

To improve understanding of the potential risks associated with tailings storage facility management, potential catastrophic failure was added as an enterprise risk in 2017 at the corporate, regional and site levels. Critical controls are reviewed and reported on a monthly basis at each operation as part of Newmont Goldcorp’s Enterprise Risk Management program.
The tables below include an inventory of the location and size of tailings storage facilities at both operating and legacy sites. The sites shown are owned and operated by Newmont Goldcorp unless otherwise noted.

<table>
<thead>
<tr>
<th>Mine Site, Location and Ownership</th>
<th>Facility</th>
<th>Construction Method</th>
<th>Area/Storage Capacity/Max Height</th>
<th>Most Recent Inspection</th>
<th>Facility Life</th>
<th>Status</th>
<th>Nearest Town or Body of Water</th>
</tr>
</thead>
</table>
| Boddington WA, Australia | Residue Disposal Area | Upstream/Modified Centerline | · Area – 1,200 hectares
· Storage Capacity – 600 Mt
· Max. Height – 68 m | July 2018 | 2025 | Active | · 20 km from the Hotham River
· 80 km from the North Dandalup Dam (WA Reservoir) |
| | R4 Residue Disposal Area | Upstream | · Area – 1,000 hectares
· Storage Capacity – 60 Mt
· Max. Height – 27 m | May 2018 | n/a | Inactive/Care and Maintenance | · 20 km from the Hotham River
· 80 km from the North Dandalup Dam (WA Reservoir) |
| KCGM WA, Australia Joint Venture - Operator | Fimiston 1 TSF | Upstream | · Area – 110 hectares
· Storage Capacity – 50 Mt
· Max. Height – 60 m | July 2018 | 2028 | Active | · 10 km to Hannans Lake
· 3 km to Kalgoorlie |
| | Fimiston II TSF | Upstream | · Area – 350 hectares
· Storage Capacity – 157 Mt
· Max. Height – 60 m | July 2018 | 2028 | Inactive/Care and Maintenance | · 9 km to Hannans Lake
· 5.5 km to Kalgoorlie |
| | Kaltails TSF | Upstream | · Area – 240 hectares
· Storage Capacity – 124 Mt
· Max. Height – 60 m | July 2018 | 2028 | Active | · 4 km to Hannans Lake
· 8 km to Kalgoorlie |
| | Gidji I TSF | Downstream | · Storage Capacity – 2.7 Mt
· Max. Height – 30 m | July 2018 | 2021 | Inactive/Care and Maintenance | · 16 km to Kalgoorlie |
| | Gidji II TSF | Downstream | · Storage Capacity – 1 Mt
· Max. Height – 25 m | July 2018 | 2021 | Active | · 16 km to Kalgoorlie |
| | Mullingar | Uncertain | · Area – 1.6 hectares
· Storage Capacity – 0.13 Mt
· Max. Height – 8 m | - | n/a | Inactive/Care and Maintenance | · 4 km to Kaloorlie |
| | Mt. Percy | Upstream | · Area – 55 hectares
· Storage Capacity – 12.6 Mt
· Max. Height – 23 m | July 2018 | n/a | Inactive/Care and Maintenance | · 2 km from Kalgoorlie and about 1 km from Ninga |
| | Paringa | Uncertain | · Area – 18 hectares
· Storage Capacity – 1.3 Mt
· Max. Height – 5 m | - | n/a | Inactive/Care and Maintenance | · 9.5 km from Hannas Lake and 3.5 km from Kalgoorlie |
| | Croesus | Uncertain | · Area – 15.3 hectares
· Storage Capacity – 6.4 Mt
· Max. Height – 20 m | 2012 | n/a | Inactive/Care and Maintenance | · 600 m from Kalgoorlie but drains towards Fimiston Pit |
| | Old Croesus | Uncertain, mostly encapsulated in waste rock | · Area – 5.8 hectares
· Storage Capacity – 3.2 Mt
· Max. Height – 23 m | - | n/a | Inactive/Care and Maintenance | · 1.3 km from Kalgoorlie |
<table>
<thead>
<tr>
<th>Mine Site, Location and Ownership</th>
<th>Facility</th>
<th>Construction Method</th>
<th>Area/Storage Capacity/Max Height</th>
<th>Most Recent Inspection</th>
<th>Facility Life</th>
<th>Status</th>
<th>Nearest Town or Body of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanami NT, Australia</td>
<td>GTD08 TSF</td>
<td>Upstream</td>
<td>· Area – 170 hectares</td>
<td>August 2018</td>
<td>2025</td>
<td>Active</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 25.5 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 15 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTD03 TSF</td>
<td>Upstream</td>
<td>· Area – 83 hectares</td>
<td>August 2018</td>
<td>n/a</td>
<td>Inactive/ Care and Maintenance</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 10.5 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 15 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTD01/02 Upstream</td>
<td></td>
<td>· Area – 71 hectares</td>
<td>August 2018</td>
<td>Currently mined for paste backfill</td>
<td>Inactive/ Care and Maintenance</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 6.8 Mt (Currently mined for paste backfill)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 15 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shoe (GTD04) In-Pit</td>
<td></td>
<td>· Area – 22 hectares</td>
<td>August 2018</td>
<td>n/a</td>
<td>Active</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 1.5 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max Height – 6 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quorn (GTD05) In-Pit</td>
<td></td>
<td>· Area – 38 hectares</td>
<td>August 2018</td>
<td>n/a</td>
<td>Inactive/ Care and Maintenance</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 6 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max Height – 12 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binkers (GTD06) In-Pit</td>
<td></td>
<td>· Area – 14 hectares</td>
<td>April 2017</td>
<td>n/a</td>
<td>Closed/ Rehabilitated</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 0.6 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max Height – 3 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bullakitchie (GTD07) In-Pit</td>
<td></td>
<td>· Area – 15.5 hectares</td>
<td>2005</td>
<td>n/a</td>
<td>Closed/ Rehabilitated</td>
<td>· 260 km to Lake Mackay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – n/a (no above ground storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max Height – No above ground storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlin Nevada, USA</td>
<td>Mill1 TSF Modified Centerline/ Upstream</td>
<td></td>
<td>· Area – 52 hectares</td>
<td>September 2018</td>
<td>n/a</td>
<td>Closed</td>
<td>· Proximity to the Mill 1 site and the North Area Offices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 22 Mt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max Height – 90 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mill 4/2 TSF Downstream</td>
<td></td>
<td>· Area – 20 hectares</td>
<td>September 2018</td>
<td>Currently mined for paste backfill</td>
<td>Inactive/ Care and Maintenance</td>
<td>· 2.8 km to Betze-Post Pit (onsite)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 16 Mt (Currently mined for paste backfill)</td>
<td></td>
<td></td>
<td></td>
<td>· 11.8 km to North Area Offices (onsite)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 195 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mill 3 (Rain) TSF Downstream</td>
<td></td>
<td>· Area – 37 hectares</td>
<td>September 2018</td>
<td>n/a</td>
<td>Closed</td>
<td>12 km from Pine Valley Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 5.4 Mt</td>
<td></td>
<td></td>
<td></td>
<td>· 0.02 km from Ferdelford Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 107 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mill 5/6 TSF Downstream</td>
<td></td>
<td>· Area – 200 hectares</td>
<td>April 2019</td>
<td>2025</td>
<td>Active</td>
<td>· 9.7 km from Carlin, NV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Storage Capacity – 150 Mt</td>
<td></td>
<td></td>
<td></td>
<td>· 0.8 km from Maggie Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· Max. Height – 90 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mine Site, Location and Ownership</td>
<td>Facility</td>
<td>Construction Method</td>
<td>Area/Storage Capacity/Max Height</td>
<td>Most Recent Inspection</td>
<td>Facility Life</td>
<td>Status</td>
<td>Nearest Town or Body of Water</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| **Carlin Nevada, USA** | Mill 5/6 West TSF | Downstream | · Area – 90 hectares
· Storage Capacity – 60 Mt
· Max. Height – 64 m | April 2019 | 2025 | Active | · 11.3 km to Carlin, NV
· 1.2 km to Maggie Creek |
| | Mill 5/6 East TSF | Downstream | · Area – 210 hectares
· Storage Capacity – 27 Mt (Currently under construction)
· Max. Height – 70 m | April 2019 | 2025 | Active | · 11 km to Carlin, NV
· 0.6 km to Maggie Creek |
| | James Creek TSF | Downstream | · Area – 32 hectares
· Storage Capacity – N/A (majority removed as part of Gold Quarry layback) | September 2018 | n/a | Closed | · James Creek |
| **Phoenix Nevada, USA** | Phoenix TSF | Downstream/Modified Centerline | · Area – 82 hectares
· Storage Capacity – 200 Mt
· Max. Height – 158 m | September 2018 | 2028 | Active | · 24.1 km from Battle Mountain
· 2.1 km from Willow Creek |
| | Lone Tree Mine Section 23 TSF | Downstream | · Area – 125 hectares
· Storage Capacity – 25 Mt | September 2018 | n/a | Closed | · 8.5 km from Valmy
· 3 km from Humboldt River |
| **Twin Creeks Nevada, USA** | Juniper TSF | Modified Centerline/Upstream | · Area – 340 hectares
· Volume – 300 Mt
· Max. Height – 73 m | September 2018 | 2032 | Active | · 64 km from Golconda, NV
· 6.4 km from Rabbit Creek |
| | Pinon TSF | Downstream | · Area – 58 hectares
· Storage Capacity – 12.3 Mt | September 2018 | n/a | Closed | · Located near Pinion oxide ore mill greater than 64 km from Golconda, NV |
| **Merian Suriname, South America** | Merian TSF | Downstream | · Area – 710 hectares
· Storage Capacity – 135 Mt
· Max. Height – 47 m | August 2018 | 2029 | Active | · 34 km from Java, Suriname |
| **Yanacocha Peru, South America** | LQ Mill Sands Facility South TSF | Downstream | · Area – 60 hectares
· Storage Capacity – 72 Mt
· Max. Height – 80 m | October 2018 | 2019 | Inactive/Care and Maintenance | · 5.6 km to Rio Grande Dam
· 2.3 km to Rio Rejo Dam |
| | LQ Mill Sands Facility North TSF | Downstream | · Area – 40 hectares
· Storage Capacity – 29 Mt
· Max. Height – 80 m | October 2018 | 2024 | Active | · 5.6 km to Rio Grande Dam
· 2.3 km to Rio Rejo Dam |
| **Akyem Ghana, Africa** | TSF Cell 1 | Downstream | · Area – 160 hectares
· Storage Capacity – 43 Mt
· Max. Height – 36 m | May 2018 | 2019 | Active | · Mamang River Forest Reserve |
<table>
<thead>
<tr>
<th>Mine Site, Location and Ownership</th>
<th>Facility</th>
<th>Construction Method</th>
<th>Area/Storage Capacity/Max Height</th>
<th>Most Recent Inspection</th>
<th>Facility Life</th>
<th>Status</th>
<th>Nearest Town or Body of Water</th>
</tr>
</thead>
</table>
| Akyem Ghana, Africa | TSF Cell 2 | Downstream/Modified Centerline | · Area – 100 hectares
· Storage Capacity – 43 Mt (under construction)
· Max. Height – 30 m | Under construction | 2024 | Under construction | Adjacent to Cell 1 |
| Ahafo Ghana, Africa | Ahafo TSF | Downstream/Modified Centerline | · Area – 573 hectares
· Storage Capacity – 166 Mt
· Max. Height – 40 m | May 2018 | 2038 | Active | 4.4 km to Kenyasi Resettlement
1.3 km to Dokyikrom Village |
| Penasquito Zacatecas, México | Presa de Jales | Centerline | · Area – 700 hectares
· Storage Capacity – 823 Mt
· Max. Height – 90 m | August 2018 | 2028 | Active | 2 km south to Las Mesas |
| Cerro Negro Santa Cruz, Argentina | TSF 1 | Downstream | · Area – 53 hectares
· Storage Capacity – 4.3 Mt
· Max. Height – 38 m | October 2018 | 2021 | Active | 19 km west to Rio Pintura |
| RLGM - Campbell Complex Tailings Ontario, Canada | South, West, North West and North Dams | Modified Centerline | · Area – 110 hectares
· Storage Capacity – 2.25 Mt
· Max. Height – 13.5 m | June 2018 | 2020 (dam raise planned to extend the life to 2024) | Active | Nearest community is Balmertown, 0.5 km to the Southwest |
| RLGM - Red Lake Complex Tailings Ontario, Canada | North, East End, Splitter Dyke ½, Primary Pond and Secondary Pond Dams | Modified Centerline/Downstream | · Area – 170 hectares
· Storage Capacity – 1.9 Mt
· Max. Height – 15 m | June 2018 | 2024 | Active | Nearest community is Balmertown, 2.5 km to the Southwest |
| Cochenour Wilanour Complex TMA | Centerline | · Area – 100 hectares
· Storage Capacity – 4 Mt
· Max. Height – 7 m | June 2018 | n/a | Inactive/Care and Maintenance | Nearest community is Town of Cochenour <0.5 km to the North |
| Musselwhite Ontario, Canada | Tailings Discharge Dykes | Centerline/Internal upstream with perimeter dams | · Area – 215 hectares
· Storage Capacity – 32 Mt
· Max. Height – 21 m | July 2018 | 2029 | Active | Nearest water body - Zeemel Lake is approximately 450 meters from toe of dam; 3.4 km northwest to Opapiniksan Lake |
| Porcupine Ontario, Canada | Dome No.6 TMA | Downstream | · Area – 500 hectares
· Storage Capacity – 305 Mt
· Max. Height – 33 m | June 2018 | 2028 | Active | 5 km to North to South Porcupine and 6 km Northeast to Porcupine Lake and 10 km Northwest to Timmins |
| | Broulan Reef | Downstream, buttressed | · Area – 20 hectares
· Storage Capacity – 4.8 Mt
· Max. Height – 20 m | June 2018 | n/a | Inactive/Care and Maintenance | Nearest community is South Porcupine and the nearest water is Porcupine River |
<table>
<thead>
<tr>
<th>Mine Site, Location and Ownership</th>
<th>Facility</th>
<th>Construction Method</th>
<th>Area/Storage Capacity/Max Height</th>
<th>Most Recent Inspection</th>
<th>Facility Life</th>
<th>Status</th>
<th>Nearest Town or Body of Water</th>
</tr>
</thead>
</table>
| Porcupine, Ontario, Canada | Dome 1, 2 and 2A - | Upstream | · Area – 167 hectares
· Storage Capacity – 65Mt
· Max. Height – 24 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is South Porcupine and the nearest water is Porcupine River |
| | Dome #3 | Upstream | · Area – 38 hectares
· Storage Capacity – 13 Mt
· Max. Height – 18 m | May 2017 | n/a | Inactive/ Care and Maintenance | · Nearest community is Dome Mine Site and Timmins |
| | Dome #4 | Upstream | · Area – 38 hectares
· Storage Capacity – 3 Mt
· Max. Height – 10 m | May 2017 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Porcupine River and Edwards Lake |
| | Dome #5 | Upstream | · Area – 9 hectares
· Storage Capacity – 1.3 Mt
· Max. Height – 8 m | May 2017 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Porcupine River and Edwards Lake |
| | Paymaster North | Upstream | · Area – 26 hectares
· Storage Capacity – 5.3 Mt
· Max. Height – 11 m | May 2017 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Simpson Lake |
| | Paymaster South | Upstream | · Area – 15 hectares
· Storage Capacity – 2.8 Mt
· Max. Height – 10 m | May 2017 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Simpson Lake |
| | McIntyre | Upstream | · Area – 215 hectares
· Storage Capacity – 59 Mt
· Max. Height – 5 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Porcupine River and Clear Water Lake |
| | Pamour T3 | Upstream | · Area – 125 hectares
· Storage Capacity – 32 Mt
· Max. Height – 14 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins and nearest water body is Porcupine River |
| | Pamour T2 | Upstream | · Area – 69 hectares
· Storage Capacity – 38 Mt
· Max. Height – 30 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmins (Pamour Pit between) and nearest water body is Porcupine River tributaries and Three Nations Lake) |
| | Pamour T1 | Upstream | · Area – 57 hectares
· Storage Capacity – 6 Mt
· Max. Height – 15 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmons (Pamour Pit is between) |
| | Anour A | Upstream | · Area – 6 hectares
· Storage Capacity – 1.4 Mt
· Max. Height – 14 m | June 2018 | n/a | Inactive/ Care and Maintenance | · Nearest community is Timmons (Buffalo Ankerite community) and the nearest water body is Porcupine River |
<table>
<thead>
<tr>
<th>Mine Site, Location and Ownership</th>
<th>Facility</th>
<th>Construction Method</th>
<th>Area/Storage Capacity/Max Height</th>
<th>Most Recent Inspection</th>
<th>Facility Life</th>
<th>Status</th>
<th>Nearest Town or Body of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcupine Ontario, Canada</td>
<td>Aunor B</td>
<td>Upstream</td>
<td>- Area – 8 hectares
- Storage Capacity – 2.3 Mt
- Max. Height – 18 m</td>
<td>June 2018</td>
<td>n/a</td>
<td>Inactive/Care and Maintenance</td>
<td>Nearest community is Buffalo Ankerite community and nearest water body is Porcupine River</td>
</tr>
<tr>
<td></td>
<td>Delnite</td>
<td>Upstream</td>
<td>- Area – 16 hectares
- Storage Capacity – 3 Mt
- Max. Height – 16 m</td>
<td>May 2018</td>
<td>n/a</td>
<td>Inactive/Care and Maintenance</td>
<td>Nearest community is Timmins (Delnite community) and the nearest water body is Porcupine River</td>
</tr>
<tr>
<td></td>
<td>Hallnor</td>
<td>Upstream</td>
<td>- Area – 47 hectares
- Storage Capacity – 9.1 Mt
- Max. Height – 11 m</td>
<td>May 2018</td>
<td>n/a</td>
<td>Inactive/Care and Maintenance</td>
<td>Nearest community is Timmins and nearest water body is Porcupine River</td>
</tr>
<tr>
<td></td>
<td>Conniaurum</td>
<td>Upstream</td>
<td>- Area – 49 hectares
- Storage Capacity – 9 Mt
- Max. Height – 10 m</td>
<td>May 2017</td>
<td>n/a</td>
<td>Inactive/Care and Maintenance</td>
<td>Nearest community is Timmins and nearest water body is Porcupine River</td>
</tr>
</tbody>
</table>

Note:
1) This table does not include the three facilities that use filtered tailings.
 a. Currently filtered tailings are mixed with waste rock into the heap leach facility at CC&V,
 b. Used as paste backfill for our underground operations at Carlin (Nevada) and Tanami (Australia),
 c. And dry stacked on the waste rock dump at Eleonore (Quebec, Canada)

2) This table does not identify internal dams to the tailings impoundment

3) Tailings storage facilities that are located on non-operated JVs by Newmont Goldcorp are not included in the table
Tailings Dam Inventory (Legacy Sites)

<table>
<thead>
<tr>
<th>Mine Site and Location</th>
<th>Status</th>
<th>Number of Dams/Area</th>
<th>Most Recent Inspection</th>
</tr>
</thead>
</table>
| Mt. Leyshon
 Queensland, Australia | Reclaimed and closed | - Tailings area – 200 hectares
- Storage Volume – 48 Mt
- Max. Height – 43 m
- 3 tailings facility | February 2019 |
| Miramar-Con Mine
 North West Territories, Canada | Reclaimed and closed (2 dams with water covers) | - Tailings area – 80 hectares
- Storage volume – 4.7 Mt
- Max Height – 13 m
- 3 tailings facilities | June 2018 |
| Golden Giant
 Ontario, Canada | Inactive with water cover | - Tailings area – 80 hectares
- Storage Volume – 15.3 Mt
- Max Height – 38 m
- 1 tailings facility | May 2018 |
| Empire Mine State
 Historic Park
 California, USA | In discussions on reclamation requirements; currently area has regrown with forest. Facilities are inactive.
The Sand Dam is owned by the California State Parks | - Tailings area – 61 hectares
- Storage Volume – 15.3 Mt
- Max Height – 21 m
- 2 tailings facilities | July 2017 |
| Battle Mountain Resources – San Luis Mine
 Colorado, USA | Facility has been left partially open for brine disposal (treatment facility) and for management of water during plant upset conditions. Facility is inactive. | - Tailings area – 60 hectares
- Storage Volume – 1.4 Mt
- Max Height – 47 m
- 1 tailings facility | August 2018 |
| Idarado Mining Co
 Colorado, USA | Reclaimed and closed | - Tailings area – 40 hectares
- Storage Volume – 17 Mt
- Max Height – 30 m
- 6 tailings facilities and 1 buried | September 2018 |
| Resurrection Mining Co – California Gulch
 Colorado, USA | Reclaimed and closed | - Tailings area – 14 hectares
- Storage Volume – approx...
1 Mt
- Max Height – 29 m
- 3 tailings facilities | September 2018 |
| Resurrection Mining Co – Black Cloud Mine
 Colorado, USA | Inactive | - Tailings area – 54 hectares
- Storage Volume – 1.4 Mt
- Max Height – 29 m
- 1 tailings facility | September 2018 |
| Dawn Mill/Midnite Mine
 Washington, USA | Reclaimed and closed | - Tailings area – 73 hectares
- Storage Volume – 7.2 Mt
- Max Height – 9 m
- 1 Tailings facility was constructed below grade. There other facility has a small disposal area above ground. | Inspections as part of ongoing construction activities – no formalized external inspections |
| Marlin
 San Marcos, Guatemala | Inactive/care and maintenance. Ongoing closure - cover placement | - Tailings area – 45 hectares
- Storage Volume – 22.5 Mt
- Max Height – 82.5 m
- 1 tailings facility | August 2018 |
TAILINGS DAM INVENTORY (LEGACY SITES)

<table>
<thead>
<tr>
<th>Mine Site and Location</th>
<th>Status</th>
<th>Number of Dams/Area</th>
<th>Most Recent Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>Inactive with water cover</td>
<td></td>
<td>August 2018</td>
</tr>
<tr>
<td>British Columbia, Canada</td>
<td></td>
<td>Tailings area - 138 hectares</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Volume - 72 Mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max Height – 61 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 tailings facility</td>
<td></td>
</tr>
<tr>
<td>Dona Lake</td>
<td>Inactive, care and maintenance</td>
<td></td>
<td>February 2016</td>
</tr>
<tr>
<td>Ontario, Canada</td>
<td></td>
<td>Tailings area – 28.6 hectares</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage Volume - 1 Mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max Height – 15 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 tailings facility</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1) For legacy facilities inactive is defined as no longer having deposition activities.

2) Reclaimed and closed refers an inactive dam that has been closed with the placement of a water or soil cover, revegetation and construction of water management structures.

3) The sites with water covers designed for closure and management of acid rock drainage have been defined.